
7

07

Turn over ►

IB/M/Jun18/7516/2

Do not write
outside the

box

0 1 . 1

Ella writes a program on her home computer and compiles it into an executable file.

Ella’s executable file will not run on Josephine’s computer because the two computers
have different processors.

Explain why having different processors may have caused this problem.
[2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

8

08
IB/M/Jun18/7516/2

Do not write
outside the

box

6

The processor in Ella’s computer has four cores running at 2.8 GHz and the processor
in Josephine’s computer has one core running at 3.2 GHz.

0 1 . 2 Considering these differences, explain why Josephine’s computer might be able to
complete a particular task more quickly than Ella’s.

[2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/M/Jun18/7516/2

Do not write
outside the

box 0 2 Table 3 – standard AQA assembly language instruction set. This should be used

to answer question part 0 2 . 1

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in register
n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value in
register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value specified

by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and store
the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and store
the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation between
the value in register n and the value specified by <operand2>
and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value specified
by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the number
of bits specified by <operand2> and store the result in register
d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the number
of bits specified by <operand2> and store the result in register
d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character is a
or an R:

• # – Use the decimal value specified after the #, eg #25 means use the decimal value 25.
• Rm – Use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17

Turn over ►

IB/M/Jun18/7516/2

Do not write
outside the

box Figure 3 shows an incomplete assembly language program, intended to perform
integer division by 10.

The program decrements the value in R1 in steps of 10 until the value stored in R1 is
less than 10. Each time that the value in R1 is decreased by 10 the value in R3 is
increased by 1. For example, if R1 started at 43 the sequence of numbers stored in
R1 would be 43, 33, 23, 13, 3 and the final value in R3 would be 4.

0 2 . 1 Complete the program in Figure 3.

You should assume that R1 has already been assigned a value to divide.

You may not need to use all four lines for your solution and you should not write more
than one instruction per line.

 [4 marks]

Figure 3

MOV R3, #0

loopstart: CMP R1, #10

end: HALT

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

18

18
IB/M/Jun18/7516/2

Do not write
outside the

box

6

A processor supports 32 different basic machine code operations, and two addressing
modes represented by a single bit, as shown in Figure 4 below.

Figure 4

Opcode
Operand Basic machine

operation
Addressing

mode
0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1

0 2 . 2 How many different opcodes is the machine potentially capable of supporting?
[1 mark]

0 2 . 3 In direct addressing, the value stored in the operand is the address of the memory
location which contains the data to process.

In direct addressing mode, how many memory locations could a processor that used
the instruction format described in Figure 4 potentially make use of?

[1 mark]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

9

09

Turn over ►

IB/M/Jun19/7516/2

Do not write
outside the

box

4

0 3 When the processor writes data to the main memory it will make use of the address,
control and data buses.

Explain how each of these buses will be used during this write process.
 [4 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/M/Jun19/7516/2

Do not write
outside the

box

Table 1 shows the standard AQA assembly language instruction set
that should be used to answer question part 0 4 . 1

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character is a
or an R:

• # – Use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – Use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0 to 12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

15

15

Turn over ►

IB/M/Jun19/7516/2

Do not write
outside the

box 0 4 Figure 2 shows an algorithm, written in pseudo-code, that is used to multiply two
variables W and X together. The resulting answer is stored in variable Y. It can be
assumed that both W and X are positive integers. Z is a temporary variable. The
operation DIV performs integer division.

Line numbers are included but are not part of the algorithm.

 Figure 2

 1 W  9
 2 X  12
 3 Y  0
 4 REPEAT
 5 Z  W LOGICAL BITWISE AND 1
 6 IF Z = 1 THEN
 7 Y  Y + X
 8 END IF
 9 W  W DIV 2
 10 X  X * 2
 11 UNTIL W = 0

0 4 . 1 Write a sequence of assembly language instructions that perform multiplication using
the same method shown in Figure 2.

Assume that registers 0, 1, 2 and 3 are used to store the values represented by
variables W, X, Y and Z accordingly.

Some lines, including those equivalent to line numbers 1 to 5 in Figure 2, have been
completed for you.

 [7 marks]

 MOV R0, #9
 MOV R1, #12
 MOV R2, #0

startloop: AND R3, R0, #1

jump:

 B startloop

endloop:

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

8

08
IB/G/Jun20/7516/2

Do not write
outside the

box 0 5 . 1 The memory buffer register and the program counter are examples of registers.

What is a register?
 [1 mark]

0 5 . 2 Describe the stored program concept.
 [2 marks]

0 5 . 3 Some buses in a computer system have to be bidirectional, meaning data or
instructions can travel both ways.

Explain why the data bus in a computer system must be bidirectional.
 [2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

9

09

Turn over ►

IB/G/Jun20/7516/2

Do not write
outside the

box 0 5 . 4 State two differences between how the Harvard and von Neumann architectures
operate.

 [2 marks]

Difference 1

Difference 2

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

10

10
IB/G/Jun20/7516/2

Do not write
outside the

box 0 5 . 5 Describe four steps that a processor goes through during the fetch stage of the
Fetch-Execute cycle.

You must explain the purpose of each step.
 [8 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

11

11

Turn over ►

IB/G/Jun20/7516/2

Do not write
outside the

box

15

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

12

12
IB/G/Jun20/7516/2

Do not write
outside the

box Table 1 shows the standard AQA assembly language instruction set that
should be used to answer question part 0 6 . 1

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

13

13

Turn over ►

IB/G/Jun20/7516/2

Do not write
outside the

box 0 6 . 1 Write an assembly language program to encrypt a single character using the Caesar
cipher. The character to be encrypted is represented using a character set consisting
of 26 characters with character codes 0–25. The output of the process should be the
character code of the encrypted character.

The assembly language instruction set that you should use to write the program is
listed in Table 1.

Table 2 shows the character codes and the characters they represent.

Table 2

Code Character Code Character Code Character
0 A 9 J 18 S
1 B 10 K 19 T
2 C 11 L 20 U
3 D 12 M 21 V
4 E 13 N 22 W
5 F 14 O 23 X
6 G 15 P 24 Y
7 H 16 Q 25 Z
8 I 17 R

• Memory location 100 contains the character code to be encrypted, which is in the
range 0–25

• Memory location 101 contains an integer key to be used for encryption, which is in
the range 0–25

• The program should store the character code of the encrypted character in memory
location 102

 [4 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/G/Jun20/7516/2

Do not write
outside the

box

6

0 6 . 2 An instruction uses immediate addressing.

What is immediate addressing?
 [1 mark]

0 6 . 3 Another method of encryption is the Vernam cipher.

Explain why, under the correct conditions, the Vernam cipher is perfectly secure.
 [1 mark]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

13

13
Turn over ►

IB/G/Jun22/7516/2

Do not write
outside the

box 0 7 . 1

The fetch-execute cycle involves the Current Instruction Register (CIR), Control Unit,
Memory Address Register (MAR), Memory Buffer Register (MBR) and Program
Counter (PC).

Figure 6 lists four events that can take place during one cycle of the fetch-execute
cycle. The events are labelled A to D.

Some events that take place during the fetch-execute cycle are not listed.

Put these events in the order they would occur in the fetch-execute cycle when an
ADD instruction is executed.

Write the numbers 1 to 4 beside each description in Figure 6 to indicate the order in
which the events occur. The number 1 should be used to indicate the event that
would happen first.

[3 marks]

Figure 6

Description Order
(1 to 4)

A The contents of the MBR are copied to the CIR.

B The contents of the PC are copied to the MAR.

C The Control Unit decodes the contents of the CIR.

D The result of the calculation is stored.

0 7 . 2 Describe the role of main memory in the execution of computer programs.
 [2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/G/Jun22/7516/2

Do not write
outside the

box 0 7 . 3 State the name of the processor component that is responsible for performing
mathematical operations such as addition and multiplication.

 [1 mark]

0 7 . 4 Explain why increasing the data bus width can lead to improvements in
processor performance.

 [1 mark]

0 7 . 5 Identify the bus that would need to be changed and state the change needed so that
the maximum amount of memory addressable by the processor would be doubled.

 [2 marks]

Bus to change

Change needed

9

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/G/Jun22/7516/2

Do not write
outside the

box Table 1 shows the standard AQA assembly language instruction set that
should be used to answer question 0 8 . 1 and question 0 8 . 2

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17
Turn over ►

IB/G/Jun22/7516/2

Do not write
outside the

box 0 8 . 1 Shade one lozenge to show which of the assembly instructions in Figure 7 uses
immediate addressing.

[1 mark]
Figure 7

Instruction Immediate
Addressing

A LDR R3, 42

B MOV R3, #42

C STR R3, 101

D SUB R3, R2, R1

0 8 . 2 A computer program is required that will multiply the value stored in X by 2 if it is less
than 50 and leave it unchanged if it is 50 or more.

The algorithm for this task can be written in pseudocode as:

IF X < 50 THEN
 X  X * 2
ENDIF

Write an assembly language program using the AQA assembly language instruction
set shown in Table 1 to carry out this task.

At the start, the value of X is stored in memory location 101
[4 marks]

5

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/G/Jun23/7516/2

Do not write
outside the

box 0 9 . 1 Explain the role of the status register in a processor and describe a circumstance that
would result in its contents being updated.

[2 marks]

5

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

18

18
IB/G/Jun23/7516/2

Do not write
outside the

box
Table 2 shows the standard AQA assembly language instruction set that

should be used to answer question 1 0

Table 2 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

19

19
Turn over ►

IB/G/Jun23/7516/2

Do not write
outside the

box 1 0 Figure 4 shows an algorithm written in pseudo-code. It is used to calculate the value
of the contents of variable A multiplied by the contents of variable B.

Line numbers are included in the pseudo-code but are not part of the algorithm.

Figure 4

1 A  4
2 B  3
3 C  0
4 WHILE B > 0
5 C  C + A
6 B  B – 1
7 ENDWHILE

Write a sequence of assembly language instructions that would perform the same
function as the pseudo-code in Figure 4.

Registers R1, R2 and R3 are used to hold the values of A, B and C respectively. The
assembly language code equivalent to line numbers 1 to 3 in Figure 4 have been
completed for you.

[4 marks]

MOV R1, #4

MOV R2, #3

MOV R3, #0

4

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

20

20
IB/G/Jun23/7516/2

Do not write
outside the

box 1 1 A company is redesigning the processor used in a smartwatch it sells. The redesign
will allow the company to increase the clock speed of the processor.

The processor executes all software and controls all hardware on the smartwatch.
The smartwatch uses a wide range of sensors to continuously collect data about its
wearer and environment. To improve accuracy each sensor takes many readings
every second and sends them to the processor for averaging. The smartwatch has
different software applications to play music, display images and provide a summary
of all the sensor data it has stored.

Customer feedback shows that the smartwatch provides all customers with reliable
and accurate data. However, some customers mentioned that performance can
worsen when loading a large image and listening to music at the same time.

Describe two features of the situation that suggest increasing the clock speed would
improve the performance of the smartwatch.

[2 marks]

2

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

13

13

Turn over ►

IB/G/Jun24/7516/2

Do not write
outside the

box 1 2 . 1 Figure 5 shows some of the processor registers and buses that are used during the
fetch stage of the fetch-execute cycle, together with the main memory.

Figure 5

State the name of the components that are labelled in Figure 5 with the numbers
1 to 4. In the case of register names, the full names must be stated.

 [2 marks]

1

2

3

4

1 2 . 2 Describe the stored program concept.
 [2 marks]

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

14

14
IB/G/Jun24/7516/2

Do not write
outside the

box 1 2 . 3 In a particular processor instruction set, each instruction consists of an opcode and an
operand. An operand could be an immediate value to be used by a program.

State two other types of value that can be stored in an operand.
 [2 marks]

1 2 . 4 Computer A and Computer B both have a processor with a clock speed of 2.8 GHz
but Computer A performs tasks much faster than Computer B. Computer A has a
larger cache and greater word length than Computer B.

Explain why the larger cache and greater word length are possible factors for the
performance difference between Computer A and Computer B.

 [2 marks]

Larger cache

Greater word length

8

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/G/Jun24/7516/2

Do not write
outside the

box Table 1 shows the standard AQA assembly language instruction set that
should be used to answer question 1 3

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in

the program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the number
of bits specified by <operand2> and store the result in
register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>
<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
1. # – use the decimal value specified after the #, eg #25 means use the decimal value 25
2. Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general purpose registers that the programmer can use are numbered 0–12

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17

Turn over ►

IB/G/Jun24/7516/2

Do not write
outside the

box 1 3 Registers R1 and R3 each store a different positive number.

Write a program using the standard AQA assembly language in Table 1 that will:

• store the greater of these two numbers in R1
• store 1 in R2 if the value originally in R1 is greater than the value in R3,

storing 3 in R2 otherwise.
[4 marks]

4

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17

Turn over ►

IB/M/Jun19/7517/2

Do not write
outside the

box 1 4 The greatest common divisor of two positive integers A and B is the largest positive
integer that divides both of the numbers without leaving a remainder.

For example, if A = 4 and B = 6 then:

• 4 has the divisors 1, 2 and 4
• 6 has the divisors 1, 2, 3 and 6

Therefore, the greatest common divisor of 4 and 6 is 2, since this is the biggest
number which appears in the list of divisors of both 4 and 6.

The method shown in Figure 7 is a famous method for determining the greatest
common divisor of two positive integers, A and B:

Figure 7

WHILE A ≠ B
 IF A > B THEN
 A = A – B
 ELSE
 B = B – A
 ENDIF
ENDWHILE

When the procedure described in the algorithm terminates, the value in A (and also B)
is the greatest common divisor of A and B.

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

18

18
IB/M/Jun19/7517/2

Do not write
outside the

box

Table 1 – standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:
• # – use the decimal value specified after the #, eg #25 means use the decimal value 25.
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6.

The available general purpose registers that the programmer can use are numbered 0 to 12.

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

19

19

Turn over ►

IB/M/Jun19/7517/2

Do not write
outside the

box

8

1 4 . 1 Write a program using the AQA assembly language instruction set, shown on
page 18 in Table 1, that uses the method described in Figure 7 to calculate the
greatest common divisor of two positive integers.

• At the start, the positive integer A will be stored in memory location 102 and the
positive integer B in memory location 103. Your program should use these values to
find their greatest common divisor.

• When your program terminates it should store the greatest common divisor of these
two numbers in memory location 104.

 [8 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

22

22
IB/M/Jun19/7517/2

Do not write
outside the

box

6

2

1 5 . 1 A different computer system has a wider data bus; this will speed up the execution of
programs.

Explain how the wider data bus has resulted in this effect.
 [1 mark]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

8

08
IB/G/Jun20/7517/2

Do not write
outside the

box 1 6 . 1 The diagram in Figure 2 describes the fetch part of the Fetch-Execute cycle. Some of
the names of registers have been omitted from the figure and replaced with the
numbers  to 

Figure 2

State the full names of the registers that should appear in the diagram where the
numbers are.

[2 marks]

Number Full Name of Register







1 6 . 2 Interrupts can be generated by devices connected to the processor during the
Fetch-Execute cycle.

Describe the role of interrupts.
[2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

9

09

Turn over ►

IB/G/Jun20/7517/2

Do not write
outside the

box

12

1 6 . 3 Explain why the volatile environment (the contents of registers) must be saved before
an interrupt is serviced.

[2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

27

27

Turn over ►

IB/G/Jun20/7517/2

Do not write
outside the

box 1 7 Figure 11 shows the format of a machine code instruction for a particular processor
and one instruction in that format.

Figure 11

1 7 . 1 If the operand can be used to refer to any location in the memory, how many memory
locations can the processor address?

[1 mark]

1 7 . 2 One of the two addressing modes that the processor supports is immediate
addressing.

Explain what is meant by immediate addressing.
[1 mark]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

28

28
IB/G/Jun20/7517/2

Do not write
outside the

box Table 2 – Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B <condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:

• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0–12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

29

29

Turn over ►

IB/G/Jun20/7517/2

Do not write
outside the

box 1 7 . 3 The Vernam cipher encrypts a plaintext character by performing a logical operation
between a character in the plaintext and part of the key.

Write an assembly language program, using the AQA assembly language
instruction set shown on page 28 in Table 2, to encrypt a plaintext character using
this method.

You should assume that:

• the character code of the plaintext character to be encrypted is stored in memory
location 101

• the part of the key to use to encrypt the character is stored in memory location 102

The encrypted ciphertext character should be stored in memory location 103
[3 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

15

15
Turn over ►

IB/G/Jun21/7517/2

Do not write
outside the

box This table is included so that you can answer Question 18.1 on page 17.

Table 1 – Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B <condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:

• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0–12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

16

16
IB/G/Jun21/7517/2

Do not write
outside the

box 1 8 Figure 4 shows an assembly language program which has been written using the
AQA assembly language instruction set. The instruction set is explained in Table 1
on page 15.

Figure 4

 CMP R2, #0
 BEQ exit
 MOV R0, #0
 MOV R3, #1
moveleft:
 LSL R2, R2, #1
 LSL R3, R3, #1
 CMP R2, R1
 BLT moveleft
 BEQ mainloop
 LSR R2, R2, #1
 LSR R3, R3, #1
mainloop:
 CMP R1, R2
 BLT skip
 ADD R0, R0, R3
 SUB R1, R1, R2
skip:
 AND R4, R3, #1
 CMP R4, #1
 BEQ skipshiftR2
 LSR R2, R2, #1
skipshiftR2:
 LSR R3, R3, #1
 CMP R3, #0
 BNE mainloop
exit:
 HALT

The program takes its input values from registers R1 and R2 and stores its output in
registers R0 and R1

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

17

17
Turn over ►

IB/G/Jun21/7517/2

Do not write
outside the

box 1 8 . 1 Complete the trace table below to show the results of executing the program in
Figure 4 when the initial values in registers R1 and R2 are 34 and 6

Each register can hold a 16-bit value.

You may find it easier to understand the operation of the program if you write the
contents of the registers out in both binary and decimal.

You may not need to use all the rows in the table.
[6 marks]

R0 R1 R2 R3 R4

100010 (34) 110 (6)

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

18

18
IB/G/Jun21/7517/2

Do not write
outside the

box

8

1 8 . 2 The initial values for the program (its inputs) are stored in R1 and R2 and the final
values stored in R0 and R1 are its outputs.

By considering the inputs and the outputs in your trace table for Question 06.1,
describe the purpose of the program.

[2 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

31

31
Turn over ►

IB/G/Jun21/7517/2

Do not write
outside the

box

1 9 . 1 The control unit is an important component of a processor.

Describe the role of the control unit.
 [3 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

32

32
IB/G/Jun21/7517/2

Do not write
outside the

box

8

1 9 . 2 One method that can be used to improve the performance of a processor is to
increase the amount of cache memory.

Describe:

• what cache memory is
• what cache memory is used for
• how increasing the amount of cache memory can improve the performance of a

processor.
[4 marks]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

20

20
IB/G/Jun22/7517/2

Do not write
outside the

box
This table is included so that you can answer Questions 20.1 and 20.2 on page 21.

Table 1 – Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>.

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d.

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d.

MOV Rd, <operand2> Copy the value specified by <operand2> into register d.
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>.
B <label> Always branch to the instruction at position <label> in the

program.
B <condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d.

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d.

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d.

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d.

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d.

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:

• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0–12

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

21

21
Turn over ►

IB/G/Jun22/7517/2

Do not write
outside the

box 2 0 Figure 7 shows an assembly language program that has been written using the AQA
Assembly Language Instruction Set, which is given in Table 1 on page 20.

Figure 7

 LDR R0, 120
 LDR R1, 121
 MOV R3, #0
loop:
 CMP R1, #0
 BEQ exit
 AND R2, R1, #1
 CMP R2, #0
 BEQ skip
 ADD R3, R3, R0
skip:
 LSL R0, R0, #1
 LSR R1, R1, #1
 B loop
exit:
 STR R3, 122

HALT

2 0 . 1 State the name of the addressing mode used in the instruction ADD R3, R3, R0
[1 mark]

2 0 . 2 Memory location 120 contains the value 23 and memory location 121 contains the
value 5.

Complete the trace table to show how the contents of the memory locations and
registers change when the program in Figure 7 is executed.

[5 marks]

Memory locations Registers
120 121 122 R0 R1 R2 R3

23 5

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

22

22
IB/G/Jun22/7517/2

Do not write
outside the

box

10

2 0 . 3 State the purpose of the program in Figure 7.
[1 mark]

2 0 . 4 The program in Figure 7 has been written using assembly language.

State two reasons why the programmer may have chosen to write this program in
assembly language rather than in a high-level programming language.

[2 marks]

Reason 1

Reason 2

2 0 . 5 The program in Figure 7 will be translated into machine code.

Explain the relationship between an assembly language instruction and a machine
code instruction.

[1 mark]

7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

8

08
IB/G/Jun23/7517/2

Do not write
outside the

box 2 1 . 1 Describe how the fetch-execute cycle is used to carry out machine code instructions
and how the hardware of a computer could be improved so that programs can be
executed more quickly.

Your response should include a description of what happens during each stage of the
fetch-execute cycle.

[12 marks]

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

9

09
Turn over ►

IB/G/Jun23/7517/2

Do not write
outside the

box

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

10

10
IB/G/Jun23/7517/2

Do not write
outside the

box 2 1 . 2 An interrupt may occur during the fetch-execute cycle.

Describe what an interrupt is and explain the purpose of interrupts.
[2 marks]

14

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

20

20
IB/G/Jun23/7517/2

Do not write
outside the

box 2 2

2 2 . 1

For question parts 22.1 and 22.2 you should assume that memory locations and
registers store 8-bit values. These question parts use the AQA assembly language
instruction set in Table 3 on page 23.

Assembly language instructions can be used to perform masking, which allows the
values of individual bits or groups of bits within a number to be isolated or set
independently of the values of the other bits in the number.

For example, to isolate the values of the rightmost four bits of an 8-bit number, the
number could be ANDed with the binary value 00001111.

The assembly language instruction AND R0, R1, #15 performs a bitwise logical
AND operation between the value in register R1 and the number 15 (equivalent to
00001111 in binary), storing the result in register R0.

In binary, show the result of applying the instruction AND R0, R1, #15 when
register R1 contains the decimal value 70 which is 46 in hexadecimal.

[1 mark]

R1 0 1 0 0 0 1 1 0

15 0 0 0 0 1 1 1 1

R0

2 2 . 2 In binary, show the result of applying the instruction ORR R0, R1, #48 when
register R1 contains the decimal value 6 which is 6 in hexadecimal.

[1 mark]

R1 0 0 0 0 0 1 1 0

48 0 0 1 1 0 0 0 0

R0

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

21

21
Turn over ►

IB/G/Jun23/7517/2

Do not write
outside the

box 2 2 . 3 A computer program is required to display the value of the contents of a memory
location that stores an 8-bit value. The value should be displayed on the screen of the
computer in hexadecimal.

Part of the process required to do this is to convert the value stored in the memory
location into the correct ASCII codes for each of the two digits that represent that
value in hexadecimal.

For example, if the memory location contained:

1 0 0 1 1 1 1 0

which is 9E in hexadecimal, then the ASCII codes of the characters that need to be
displayed are:

0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1

The first of these is the ASCII code of the character 9, the second is the ASCII code
of the character E.

Write an assembly language program using the AQA assembly language instruction
set that will load a value from memory location 100 and store the ASCII code of the
first (lefthand) digit of the hexadecimal representation of this value in memory location
101 and the ASCII code of the second (righthand) digit of the hexadecimal
representation of this value in memory location 102.

Your program should use masking and/or shifting to complete this task.

The ASCII codes of the hexadecimal digits are shown in Table 2 and the AQA
assembly language instruction set is in Table 3 on page 23.

Table 2

ASCII Code ASCII Code
Digit Decimal Binary Digit Decimal Binary

0 48 0110000 8 56 0111000
1 49 0110001 9 57 0111001
2 50 0110010 A 65 1000001
3 51 0110011 B 66 1000010
4 52 0110100 C 67 1000011
5 53 0110101 D 68 1000100
6 54 0110110 E 69 1000101
7 55 0110111 F 70 1000110

[10 marks]

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

22

22
IB/G/Jun23/7517/2

Do not write
outside the

box

12

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

23

23
Turn over ►

IB/G/Jun23/7517/2

Do not write
outside the

box This table is included so that you can answer question parts 22.1, 22.2 and

22.3. Table 3 – Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d

MOV Rd, <operand2> Copy the value specified by <operand2> into register d
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>
B <label> Always branch to the instruction at position <label> in

the program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and store
the result in register d

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the result
in register d

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the result
in register d

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:

• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0–12

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

33

33

Turn over ►

IB/G/Jun24/7517/2

Do not write
outside the

box This table is included so that you can answer Question 23.1 on page 35.

Table 1 – Standard AQA assembly language instruction set

LDR Rd, <memory ref> Load the value stored in the memory location specified by
<memory ref> into register d

STR Rd, <memory ref> Store the value that is in register d into the memory location
specified by <memory ref>

ADD Rd, Rn, <operand2> Add the value specified in <operand2> to the value in
register n and store the result in register d

SUB Rd, Rn, <operand2> Subtract the value specified by <operand2> from the value
in register n and store the result in register d

MOV Rd, <operand2> Copy the value specified by <operand2> into register d
CMP Rn, <operand2> Compare the value stored in register n with the value

specified by <operand2>
B <label> Always branch to the instruction at position <label> in the

program.
B<condition> <label> Branch to the instruction at position <label> if the last

comparison met the criterion specified by <condition>.
Possible values for <condition> and their meanings are:

EQ: equal to NE: not equal to
GT: greater than LT: less than

AND Rd, Rn, <operand2> Perform a bitwise logical AND operation between the value
in register n and the value specified by <operand2> and
store the result in register d

ORR Rd, Rn, <operand2> Perform a bitwise logical OR operation between the value in
register n and the value specified by <operand2> and
store the result in register d

EOR Rd, Rn, <operand2> Perform a bitwise logical XOR (exclusive or) operation
between the value in register n and the value specified by
<operand2> and store the result in register d

MVN Rd, <operand2> Perform a bitwise logical NOT operation on the value
specified by <operand2> and store the result in register d

LSL Rd, Rn, <operand2> Logically shift left the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d

LSR Rd, Rn, <operand2> Logically shift right the value stored in register n by the
number of bits specified by <operand2> and store the
result in register d

HALT Stops the execution of the program.

Labels: A label is placed in the code by writing an identifier followed by a colon (:). To refer to a
label, the identifier of the label is placed after the branch instruction.

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending on whether the first character
is a # or an R:

• # – use the decimal value specified after the #, eg #25 means use the decimal value 25
• Rm – use the value stored in register m, eg R6 means use the value stored in register 6

The available general-purpose registers that the programmer can use are numbered 0–12

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

34

34
IB/G/Jun24/7517/2

Do not write
outside the

box 2 3 Figure 7 shows an assembly language program which has been written using the
AQA assembly language instruction set. The instruction set is explained in Table 1
on page 33.

Figure 7

 LDR R1, 130
 MOV R2, #0
 MOV R4, #0
repeat:
 ADD R2, R2, #1
 AND R3, R1, #1
 CMP R3, #0
 BEQ skip
 ADD R4, R4, #1
skip:
 LSR R1, R1, #1
 CMP R2, #7
 BNE repeat
 LDR R1, 130
 AND R4, R4, #1
 CMP R4, #0
 BNE else
 ORR R1, R1, #128
 B end
else:
 AND R1, R1, #127
end:
 STR R1, 130
 HALT

The program performs a task on a value stored in memory location 130. The value in
this memory location is a 7-bit ASCII code.

For example, if memory location 130 was used to store the ASCII character ‘S’ then it
would contain the value 83, which in binary is:

0 1 0 1 0 0 1 1

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

35

35

Turn over ►

IB/G/Jun24/7517/2

Do not write
outside the

box 2 3 . 1 Complete the trace table below to show the results of executing the program in
Figure 7 when the initial value in memory location 130 is 83

Each register can hold an 8-bit value.

You may find it easier to understand the operation of the program if you write the
contents of memory location 130 and register R1 out in both binary and decimal.

You may not need to use all the rows in the table.
[6 marks]

Memory Location
130 R1 R2 R3 R4

83 (01010011)

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

36

36
IB/G/Jun24/7517/2

Do not write
outside the

box 2 3 . 2 The value in memory location 130 before the program is executed is the program’s
input and the value stored in memory location 130 when the program finishes
executing is its output.

By considering your trace table for Question 10.1 and the assembly language code in
Figure 7, describe the purpose of the program.

[2 marks]

11

PMT
7.3 Structure and role of the processor and its components PhysicsAndMathsTutor.com

